High School

Select all the expressions that are equivalent to [tex]$3^4$[/tex].

A. 7
B. [tex]$4^3$[/tex]
C. 12
D. 81
E. 64
F. [tex]$9^2$[/tex]

Answer :

To determine which expressions are equivalent to [tex]\(3^4\)[/tex], let's first identify the value of [tex]\(3^4\)[/tex]:

[tex]\[ 3^4 = 3 \times 3 \times 3 \times 3 = 81 \][/tex]

Now, let's evaluate each option to see if any match this value of 81:

- Option A: 7

7 is not equivalent to 81.

- Option B: [tex]\(4^3\)[/tex]

[tex]\[ 4^3 = 4 \times 4 \times 4 = 64 \][/tex]

64 is not equivalent to 81.

- Option C: 12

12 is not equivalent to 81.

- Option D: 81

This exactly matches the value of [tex]\(3^4\)[/tex], so it is equivalent.

- Option E: 64

64 is not equivalent to 81.

- Option F: [tex]\(9^2\)[/tex]

[tex]\[ 9^2 = 9 \times 9 = 81 \][/tex]

This matches the value of [tex]\(3^4\)[/tex], so it is also equivalent.

Therefore, the expressions that are equivalent to [tex]\(3^4\)[/tex] are:

- D. 81
- F. [tex]\(9^2\)[/tex]

These are the correct results, so options D and F are the ones equivalent to [tex]\(3^4\)[/tex].