Answer :
To solve the problem, follow these steps:
1. First, convert the child's weight from pounds to kilograms using the approximation
[tex]$$1 \text{ kg} \approx 2.2 \text{ lbs}.$$[/tex]
Thus, the weight in kilograms is
[tex]$$\text{Weight} = \frac{55}{2.2} \approx 25 \text{ kg}.$$[/tex]
2. Next, calculate the total dose in micrograms by multiplying the weight in kilograms by the dose rate:
[tex]$$\text{Dose (in micrograms)} = 25 \text{ kg} \times 250 \text{ micrograms/kg} = 6250 \text{ micrograms}.$$[/tex]
3. Convert the dose from micrograms to milligrams knowing that
[tex]$$1 \text{ mg} = 1000 \text{ micrograms}.$$[/tex]
This gives:
[tex]$$\text{Dose (in mg)} = \frac{6250}{1000} = 6.25 \text{ mg}.$$[/tex]
Thus, the appropriate dose for the child is
[tex]$$\boxed{6.25 \text{ mg}}.$$[/tex]
1. First, convert the child's weight from pounds to kilograms using the approximation
[tex]$$1 \text{ kg} \approx 2.2 \text{ lbs}.$$[/tex]
Thus, the weight in kilograms is
[tex]$$\text{Weight} = \frac{55}{2.2} \approx 25 \text{ kg}.$$[/tex]
2. Next, calculate the total dose in micrograms by multiplying the weight in kilograms by the dose rate:
[tex]$$\text{Dose (in micrograms)} = 25 \text{ kg} \times 250 \text{ micrograms/kg} = 6250 \text{ micrograms}.$$[/tex]
3. Convert the dose from micrograms to milligrams knowing that
[tex]$$1 \text{ mg} = 1000 \text{ micrograms}.$$[/tex]
This gives:
[tex]$$\text{Dose (in mg)} = \frac{6250}{1000} = 6.25 \text{ mg}.$$[/tex]
Thus, the appropriate dose for the child is
[tex]$$\boxed{6.25 \text{ mg}}.$$[/tex]