College

Residential Solar Solution:

a. A type of photovoltaic solar panel manufactured in China receives a rating of 250W. The rating process utilizes a uniform solar irradiance of 1 kW/m^2. If the solar panel has an area of 20 ft^2, what is the efficiency of this solar panel?

b. If the average yearly solar irradiance is 150 W/m^2 in Maryland, and the average daylight is 6 hours, how much energy (in kJ) can one solar panel generate daily?

c. If we install 18 solar panels on the roof, and the regular electricity rate is $0.16 per kWh, how much can you save in electricity bills per month?

d. How long (in years) will it take to pay back the installation cost of the solar panels if the installation cost is $9,500?

Answer :

Answer:

a) [tex]\eta = 13.455\%[/tex], b) [tex]E_{day} = 812.716\,kJ[/tex], c) [tex]C_{month. total} = 19.505\, USD[/tex], d) [tex]t = 40.588\,years[/tex]

Explanation:

a) The area of the solar panel is:

[tex]A = (20\,ft^{2})\cdot (\frac{0.3048\,m}{1\,ft} )^{2}[/tex]

[tex]A = 1.858\,m^{2}[/tex]

The energy potential is determined herein:

[tex]\dot E_{o} = (1000\,\frac{W}{m^{2}} )\cdot (1.858\,m^{2})[/tex]

[tex]\dot E_{o} = 1858\,W[/tex]

The efficiency of the solar panel is:

[tex]\eta = \frac{\dot E}{\dot E_{o}}\times 100\%[/tex]

[tex]\eta = \frac{250\,W}{1858\,W}\times 100\%[/tex]

[tex]\eta = 13.455\%[/tex]

b) The energy generated by the solar panel is presented below:

[tex]E_{day} = (0.135)\cdot (150\,\frac{W}{m^{2}} )\cdot (20\,ft^{2})\cdot \left(\frac{0.3048\,m}{1\,ft} \right)^{2}\cdot (6\,h)\cdot (\frac{3600\,s}{1\,h} )\cdot (\frac{1\,kJ}{1000\,J} )[/tex]

[tex]E_{day} = 812.716\,kJ[/tex]

c) The energy generated per month and per panel is:

[tex]E_{month} = 30\cdot E_{day}[/tex]

[tex]E_{month} = 30 \cdot (812.716\,kJ)\cdot \left(\frac{1\,kWh}{3600\,kJ} \right)[/tex]

[tex]E_{month} = 6.773\,kWh[/tex]

Monthly energy savings due to the use of 18 panels are:

[tex]C_{month, total} = 18\cdot E_{month}\cdot c[/tex]

[tex]C_{month, total} = 18\cdot (6.773\,kWh)\cdot (\frac{0.16\,USD}{1\,kWh} )[/tex]

[tex]C_{month. total} = 19.505\, USD[/tex]

d) The payback of the solar energy system is:

[tex]t = \frac{9500\,USD}{12\cdot (19.505\,USD)}[/tex]

[tex]t = 40.588\,years[/tex]