Answer :
To find the area given the terms [tex]\( L = (3xy^2)^2 \)[/tex] and [tex]\( W = (2x^2)^4 \)[/tex], let's break down the steps:
1. Calculate [tex]\( L = (3xy^2)^2 \)[/tex]:
- Start by squaring each component within the parentheses.
- [tex]\( 3^2 = 9 \)[/tex].
- [tex]\( x^2 = x^2 \)[/tex].
- [tex]\( (y^2)^2 = y^{2 \times 2} = y^4 \)[/tex].
Thus, [tex]\( L = 9x^2y^4 \)[/tex].
2. Calculate [tex]\( W = (2x^2)^4 \)[/tex]:
- Raise each component inside the parentheses to the power of 4.
- [tex]\( 2^4 = 16 \)[/tex].
- [tex]\( (x^2)^4 = x^{2 \times 4} = x^8 \)[/tex].
So, [tex]\( W = 16x^8 \)[/tex].
3. Find the area [tex]\( A = L \times W \)[/tex]:
- Multiply the coefficients: [tex]\( 9 \times 16 = 144 \)[/tex].
- Combine the terms involving [tex]\( x \)[/tex]: [tex]\( x^2 \times x^8 = x^{2 + 8} = x^{10} \)[/tex].
- Combine the terms involving [tex]\( y \)[/tex]: [tex]\( y^4 \times 1 = y^4 \)[/tex] (since there’s no [tex]\( y \)[/tex] in [tex]\( W \)[/tex], it’s just [tex]\( y^4 \)[/tex]).
Therefore, the area is [tex]\( A = 144x^{10}y^4 \)[/tex].
The calculated area is expressed as [tex]\( 144x^{10}y^4 \)[/tex], with the coefficient 144, the power of [tex]\( x \)[/tex] as 10, and the power of [tex]\( y \)[/tex] as 4.
1. Calculate [tex]\( L = (3xy^2)^2 \)[/tex]:
- Start by squaring each component within the parentheses.
- [tex]\( 3^2 = 9 \)[/tex].
- [tex]\( x^2 = x^2 \)[/tex].
- [tex]\( (y^2)^2 = y^{2 \times 2} = y^4 \)[/tex].
Thus, [tex]\( L = 9x^2y^4 \)[/tex].
2. Calculate [tex]\( W = (2x^2)^4 \)[/tex]:
- Raise each component inside the parentheses to the power of 4.
- [tex]\( 2^4 = 16 \)[/tex].
- [tex]\( (x^2)^4 = x^{2 \times 4} = x^8 \)[/tex].
So, [tex]\( W = 16x^8 \)[/tex].
3. Find the area [tex]\( A = L \times W \)[/tex]:
- Multiply the coefficients: [tex]\( 9 \times 16 = 144 \)[/tex].
- Combine the terms involving [tex]\( x \)[/tex]: [tex]\( x^2 \times x^8 = x^{2 + 8} = x^{10} \)[/tex].
- Combine the terms involving [tex]\( y \)[/tex]: [tex]\( y^4 \times 1 = y^4 \)[/tex] (since there’s no [tex]\( y \)[/tex] in [tex]\( W \)[/tex], it’s just [tex]\( y^4 \)[/tex]).
Therefore, the area is [tex]\( A = 144x^{10}y^4 \)[/tex].
The calculated area is expressed as [tex]\( 144x^{10}y^4 \)[/tex], with the coefficient 144, the power of [tex]\( x \)[/tex] as 10, and the power of [tex]\( y \)[/tex] as 4.