High School

Multiply the polynomials:

[tex]
(4x^2 + 3x + 7)(8x - 5)
[/tex]

A. [tex]32x^3 - 4x^2 - 41x + 35[/tex]
B. [tex]32x^3 + 4x^2 + 41x + 35[/tex]
C. [tex]32x^3 - 44x^2 - 71x - 35[/tex]
D. [tex]32x^3 + 4x^2 + 41x - 35[/tex]

Answer :

To multiply the polynomials [tex]\((4x^2 + 3x + 7)(8x - 5)\)[/tex], follow these steps:

1. Distribute each term in the first polynomial to each term in the second polynomial.

- Multiply [tex]\(4x^2\)[/tex] by [tex]\(8x\)[/tex]:
[tex]\[
4x^2 \times 8x = 32x^3
\][/tex]

- Multiply [tex]\(4x^2\)[/tex] by [tex]\(-5\)[/tex]:
[tex]\[
4x^2 \times -5 = -20x^2
\][/tex]

- Multiply [tex]\(3x\)[/tex] by [tex]\(8x\)[/tex]:
[tex]\[
3x \times 8x = 24x^2
\][/tex]

- Multiply [tex]\(3x\)[/tex] by [tex]\(-5\)[/tex]:
[tex]\[
3x \times -5 = -15x
\][/tex]

- Multiply [tex]\(7\)[/tex] by [tex]\(8x\)[/tex]:
[tex]\[
7 \times 8x = 56x
\][/tex]

- Multiply [tex]\(7\)[/tex] by [tex]\(-5\)[/tex]:
[tex]\[
7 \times -5 = -35
\][/tex]

2. Combine the results by adding like terms together.

- Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[
-20x^2 + 24x^2 = 4x^2
\][/tex]

- Combine the [tex]\(x\)[/tex] terms:
[tex]\[
-15x + 56x = 41x
\][/tex]

3. Write the final expression:

After combining all like terms, the expanded polynomial is:
[tex]\[
32x^3 + 4x^2 + 41x - 35
\][/tex]

The correct choice for the multiplication of the polynomials is therefore option B: [tex]\(32x^3 + 4x^2 + 41x - 35\)[/tex].