High School

On his first day of school, Kareem found the high temperature to be [tex]76.1^{\circ}[/tex] Fahrenheit. He plans to use the function [tex]C(F) = \frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes for a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes for a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

To solve the problem of converting the temperature from degrees Fahrenheit to degrees Celsius, we can use the provided conversion formula:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

Here, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit that we want to convert.

1. Identify the Fahrenheit Temperature:
- Kareem found the high temperature to be [tex]\( 76.1^{\circ} \text{F} \)[/tex].

2. Apply the Conversion Formula:
- Substitute [tex]\( 76.1 \)[/tex] for [tex]\( F \)[/tex] in the formula:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]

3. Calculate the Celsius Temperature:
- First, calculate [tex]\( 76.1 - 32 \)[/tex].
- Next, multiply the result by [tex]\(\frac{5}{9}\)[/tex].

4. Interpret the Result:
- The result from the calculation gives the temperature in degrees Celsius.

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1^{\circ} \text{F} \)[/tex] converted to degrees Celsius. In this case, the converted Celsius temperature is approximately [tex]\( 24.5^{\circ} \text{C} \)[/tex].