Answer :
We are given the temperature in degrees Fahrenheit, [tex]$76.1^\circ\text{F}$[/tex], and the function
[tex]$$
C(F) = \frac{5}{9}(F-32)
$$[/tex]
which converts a Fahrenheit temperature into Celsius.
Follow these steps:
1. Substitute [tex]$F = 76.1$[/tex] into the function:
[tex]$$
C(76.1) = \frac{5}{9}(76.1-32)
$$[/tex]
2. Evaluate the expression inside the parentheses:
[tex]$$
76.1-32 = 44.1
$$[/tex]
3. Multiply by [tex]$\frac{5}{9}$[/tex]:
[tex]$$
C(76.1) = \frac{5}{9}(44.1) \approx 24.5
$$[/tex]
This result, approximately [tex]$24.5^\circ\text{C}$[/tex], represents the temperature of [tex]$76.1^\circ\text{F}$[/tex] converted to degrees Celsius.
Thus, the correct interpretation is:
- the temperature of [tex]$76.1$[/tex] degrees Fahrenheit converted to degrees Celsius.
[tex]$$
C(F) = \frac{5}{9}(F-32)
$$[/tex]
which converts a Fahrenheit temperature into Celsius.
Follow these steps:
1. Substitute [tex]$F = 76.1$[/tex] into the function:
[tex]$$
C(76.1) = \frac{5}{9}(76.1-32)
$$[/tex]
2. Evaluate the expression inside the parentheses:
[tex]$$
76.1-32 = 44.1
$$[/tex]
3. Multiply by [tex]$\frac{5}{9}$[/tex]:
[tex]$$
C(76.1) = \frac{5}{9}(44.1) \approx 24.5
$$[/tex]
This result, approximately [tex]$24.5^\circ\text{C}$[/tex], represents the temperature of [tex]$76.1^\circ\text{F}$[/tex] converted to degrees Celsius.
Thus, the correct interpretation is:
- the temperature of [tex]$76.1$[/tex] degrees Fahrenheit converted to degrees Celsius.