College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(A)=\frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes for a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes for a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

We are given the temperature in degrees Fahrenheit, [tex]$76.1^\circ\text{F}$[/tex], and the function

[tex]$$
C(F) = \frac{5}{9}(F-32)
$$[/tex]

which converts a Fahrenheit temperature into Celsius.

Follow these steps:

1. Substitute [tex]$F = 76.1$[/tex] into the function:

[tex]$$
C(76.1) = \frac{5}{9}(76.1-32)
$$[/tex]

2. Evaluate the expression inside the parentheses:

[tex]$$
76.1-32 = 44.1
$$[/tex]

3. Multiply by [tex]$\frac{5}{9}$[/tex]:

[tex]$$
C(76.1) = \frac{5}{9}(44.1) \approx 24.5
$$[/tex]

This result, approximately [tex]$24.5^\circ\text{C}$[/tex], represents the temperature of [tex]$76.1^\circ\text{F}$[/tex] converted to degrees Celsius.

Thus, the correct interpretation is:

- the temperature of [tex]$76.1$[/tex] degrees Fahrenheit converted to degrees Celsius.