College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(F)=\frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

To solve the problem of converting a temperature from degrees Fahrenheit to degrees Celsius, you can use the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].

Here’s the step-by-step explanation:

1. Identify the Given Temperature: The temperature given in the problem is 76.1 degrees Fahrenheit.

2. Use the Conversion Formula: The formula [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is used to convert the temperature from Fahrenheit to Celsius. In this formula, [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit, and [tex]\( C(F) \)[/tex] is the resulting temperature in degrees Celsius.

3. Substitute the Given Value: Substitute 76.1 for [tex]\( F \)[/tex] in the formula:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]

4. Perform the Calculation:
- First, calculate the difference: [tex]\( 76.1 - 32 = 44.1 \)[/tex].
- Next, multiply 44.1 by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1 \approx 24.5
\][/tex]

5. Interpret the Result: The calculation results in approximately 24.5 degrees Celsius.

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.