College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(F)=\frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

To solve the problem of converting the temperature from degrees Fahrenheit to degrees Celsius, we'll use the function provided:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

Here, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit, and [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius.

We are given [tex]\( F = 76.1 \)[/tex] degrees Fahrenheit. Let's substitute this into the conversion formula to find the corresponding temperature in degrees Celsius:

1. Subtract 32 from the Fahrenheit temperature:

[tex]\[ 76.1 - 32 = 44.1 \][/tex]

2. Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:

[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]

3. Calculate the result:

[tex]\[ C(76.1) \approx 24.5 \][/tex]

So, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius. Therefore, the correct interpretation is:

The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.