Answer :
To solve the problem of converting the temperature from degrees Fahrenheit to degrees Celsius, we'll use the function provided:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
Here, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit, and [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius.
We are given [tex]\( F = 76.1 \)[/tex] degrees Fahrenheit. Let's substitute this into the conversion formula to find the corresponding temperature in degrees Celsius:
1. Subtract 32 from the Fahrenheit temperature:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
2. Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
3. Calculate the result:
[tex]\[ C(76.1) \approx 24.5 \][/tex]
So, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius. Therefore, the correct interpretation is:
The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
Here, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit, and [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius.
We are given [tex]\( F = 76.1 \)[/tex] degrees Fahrenheit. Let's substitute this into the conversion formula to find the corresponding temperature in degrees Celsius:
1. Subtract 32 from the Fahrenheit temperature:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
2. Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
3. Calculate the result:
[tex]\[ C(76.1) \approx 24.5 \][/tex]
So, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius. Therefore, the correct interpretation is:
The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.