Answer :
To solve this problem, we're using Kareem's function to convert temperatures from degrees Fahrenheit to degrees Celsius. The function given is:
[tex]\[ C(F) = \frac{5}{9} \times (F - 32) \][/tex]
Here, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit, and [tex]\( C(F) \)[/tex] provides the temperature in degrees Celsius.
The temperature we need to convert is 76.1 degrees Fahrenheit. We substitute this value into the function:
1. Subtract 32 from the Fahrenheit temperature:
[tex]\( F = 76.1 \)[/tex]
Perform the subtraction:
[tex]\[ F - 32 = 76.1 - 32 = 44.1 \][/tex]
2. Multiply the result by [tex]\(\frac{5}{9}\)[/tex] to convert to Celsius:
Multiply 44.1 by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ \frac{5}{9} \times 44.1 \approx 24.5 \][/tex]
Thus, [tex]\( C(76.1) \)[/tex] represents the temperature in degrees Celsius equivalent to 76.1 degrees Fahrenheit. The correct interpretation in the original list of options is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
[tex]\[ C(F) = \frac{5}{9} \times (F - 32) \][/tex]
Here, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit, and [tex]\( C(F) \)[/tex] provides the temperature in degrees Celsius.
The temperature we need to convert is 76.1 degrees Fahrenheit. We substitute this value into the function:
1. Subtract 32 from the Fahrenheit temperature:
[tex]\( F = 76.1 \)[/tex]
Perform the subtraction:
[tex]\[ F - 32 = 76.1 - 32 = 44.1 \][/tex]
2. Multiply the result by [tex]\(\frac{5}{9}\)[/tex] to convert to Celsius:
Multiply 44.1 by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ \frac{5}{9} \times 44.1 \approx 24.5 \][/tex]
Thus, [tex]\( C(76.1) \)[/tex] represents the temperature in degrees Celsius equivalent to 76.1 degrees Fahrenheit. The correct interpretation in the original list of options is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.