College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex][tex]$C(76.1)$[/tex][/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

Sure! Let's solve the problem step-by-step.

Kareem wants to convert a temperature of 76.1 degrees Fahrenheit into degrees Celsius. To do this, he's using the function:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

Where:
- [tex]\( C(F) \)[/tex] is the temperature in degrees Celsius,
- [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit.

To find what [tex]\( C(76.1) \)[/tex] represents, let's plug [tex]\( 76.1 \)[/tex] into the function:

1. Insert the Fahrenheit temperature into the function:
- Substitute [tex]\( F = 76.1 \)[/tex] into the formula:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]

2. Calculate the difference:
- [tex]\( 76.1 - 32 = 44.1 \)[/tex]

3. Multiply by [tex]\(\frac{5}{9}\)[/tex]:
- [tex]\( \frac{5}{9} \times 44.1 \approx 24.5 \)[/tex]

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius.

So, the correct interpretation of what [tex]\( C(76.1) \)[/tex] represents is: the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.