Answer :
Sure! Let's go through the problem step-by-step to understand what [tex]\(C(76.1)\)[/tex] represents.
You are given a function [tex]\(C(F) = \frac{5}{9}(F - 32)\)[/tex] which converts a temperature from degrees Fahrenheit ([tex]\(F\)[/tex]) to degrees Celsius ([tex]\(C\)[/tex]).
The problem states that Kareem found the high temperature on his first day of school to be [tex]\(76.1^\circ\)[/tex] Fahrenheit, and he wants to convert this temperature to degrees Celsius.
Let's break it down:
1. Identify the given Fahrenheit temperature:
[tex]\[
F = 76.1^\circ \text{F}
\][/tex]
2. Using the conversion function [tex]\(C(F)\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
3. Compute the inside of the parentheses first:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
4. Apply the remaining part of the function:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
5. Multiply:
[tex]\[
C(76.1) = \frac{5 \times 44.1}{9} \approx 24.5^\circ \text{C}
\][/tex]
So, [tex]\(C(76.1)\)[/tex] represents the temperature of [tex]\(76.1^\circ\)[/tex] Fahrenheit converted to degrees Celsius, which equals approximately [tex]\(24.5^\circ\)[/tex] Celsius.
Therefore, the correct answer is:
- [tex]\(C(76.1)\)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
You are given a function [tex]\(C(F) = \frac{5}{9}(F - 32)\)[/tex] which converts a temperature from degrees Fahrenheit ([tex]\(F\)[/tex]) to degrees Celsius ([tex]\(C\)[/tex]).
The problem states that Kareem found the high temperature on his first day of school to be [tex]\(76.1^\circ\)[/tex] Fahrenheit, and he wants to convert this temperature to degrees Celsius.
Let's break it down:
1. Identify the given Fahrenheit temperature:
[tex]\[
F = 76.1^\circ \text{F}
\][/tex]
2. Using the conversion function [tex]\(C(F)\)[/tex]:
[tex]\[
C(76.1) = \frac{5}{9}(76.1 - 32)
\][/tex]
3. Compute the inside of the parentheses first:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
4. Apply the remaining part of the function:
[tex]\[
C(76.1) = \frac{5}{9} \times 44.1
\][/tex]
5. Multiply:
[tex]\[
C(76.1) = \frac{5 \times 44.1}{9} \approx 24.5^\circ \text{C}
\][/tex]
So, [tex]\(C(76.1)\)[/tex] represents the temperature of [tex]\(76.1^\circ\)[/tex] Fahrenheit converted to degrees Celsius, which equals approximately [tex]\(24.5^\circ\)[/tex] Celsius.
Therefore, the correct answer is:
- [tex]\(C(76.1)\)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.