High School

### Objectives:
- Piece-wise functions
- Graphing lines (slope-intercept, vertical, horizontal)

### Directions:
Graph the following "pieces" to complete a picture on the provided coordinate plane. Order does not matter.

\[
\begin{array}{|c|l|}
\hline
1 & f(x) = 10 \text{ if } -4 \leq x \leq 4 \\
\hline
2 & f(x) = -8 \text{ if } -2 \leq x \leq 2 \\
\hline
3 & f(x) = \frac{3}{8}x - \frac{70}{8} \text{ if } 2 \leq x \leq 10 \\
\hline
4 & f(x) = -\frac{3}{8}x - \frac{70}{8} \text{ if } -10 \leq x \leq -2 \\
\hline
5 & f(x) = -x + 14 \text{ if } 4 \leq x \leq 10 \\
\hline
6 & f(x) = x + 14 \text{ if } -10 \leq x \leq -4 \\
\hline
7 & f(x) = 13 \text{ if } -1 \leq x \leq 2 \\
\hline
8 & f(x) = 12 \text{ if } 1 \leq x \leq 2 \\
\hline
9 & f(x) = 4 \text{ if } 2 \leq x \leq 8 \\
\hline
10 & f(x) = 4 \text{ if } -8 \leq x \leq -2 \\
\hline
11 & f(x) = -1 \text{ if } -2 \leq x \leq 2 \\
\hline
12 & f(x) = -3 \text{ if } -5 \leq x \leq 5 \\
\hline
13 & f(x) = -5 \text{ if } -5 \leq x \leq 5 \\
\hline
14 & f(x) = -4 \text{ if } 1 \leq x \leq 2 \\
\hline
15 & f(x) = -4 \text{ if } -3 \leq x \leq -2 \\
\hline
16 & f(x) = -\frac{1}{2}x + 8 \text{ if } 2 \leq x \leq 8 \\
\hline
17 & f(x) = \frac{1}{2}x + 8 \text{ if } -8 \leq x \leq -2 \\
\hline
18 & f(x) = x + 1 \text{ if } -2 \leq x \leq 0 \\
\hline
19 & f(x) = -x + 1 \text{ if } 0 \leq x \leq 2 \\
\hline
20 & f(x) = x - 8 \text{ if } 5 \leq x \leq 7 \\
\hline
21 & f(x) = -x - 8 \text{ if } -7 \leq x \leq -5 \\
\hline
22 & f(x) = 2x - 15 \text{ if } 5 \leq x \leq 7 \\
\hline
23 & f(x) = -2x - 15 \text{ if } -7 \leq x \leq -5 \\
\hline
24 & x = 10 \text{ if } -5 \leq y \leq 4 \\
\hline
25 & x = -10 \text{ if } -5 \leq y \leq 4 \\
\hline
26 & x = -1 \text{ if } 10 \leq y \leq 13 \\
\hline
28 & x = 2 \text{ if } 12 \leq y \leq 13 \\
\hline
29 & x = -3 \text{ if } -4 \leq y \leq -3 \\
\hline
30 & x = -2 \text{ if } -4 \leq y \leq -3 \\
\hline
31 & x = 2 \text{ if } -5 \leq y \leq -4 \\
\hline
32 & x = -2 \text{ if } 4 \leq y \leq 7 \\
\hline
33 & x = 2 \text{ if } 4 \leq y \leq 7 \\
\hline
\end{array}
\]

Answer :

Certainly! Let's break down the solution step-by-step.

1. Determine the Initial Money:
- The initial amount of money is [tex]$23.

2. Count the Number of Bagels:
- The number of bagels to buy is 5.

3. Determine the Cost per Bagel:
- The cost per bagel is $[/tex]3.

4. Calculate the Total Money Spent on Bagels:
- To find out how much money is spent, multiply the number of bagels by the cost per bagel:
[tex]\[ \text{Money Spent} = \text{Number of Bagels} \times \text{Cost per Bagel} \][/tex]
[tex]\[ \text{Money Spent} = 5 \times 3 \][/tex]
[tex]\[ \text{Money Spent} = 15 \][/tex]

5. Calculate the Money Left:
- To determine how much money is left after buying the bagels, subtract the money spent from the initial amount of money:
[tex]\[ \text{Money Left} = \text{Initial Money} - \text{Money Spent} \][/tex]
[tex]\[ \text{Money Left} = 23 - 15 \][/tex]
[tex]\[ \text{Money Left} = 8 \][/tex]

Therefore, the total amount of money spent on bagels is [tex]$15, and the remaining money is $[/tex]8.