Answer :
The expressions [tex]\( (x^2 - 5x) \) and \( (2x^2 + x - 3) \)[/tex] correct option is [tex]\( \boxed{\text{OB. } 2x^4 - 9x^3 - 8x^2 + 15x} \).[/tex]
To multiply the expressions [tex]\( (x^2 - 5x) \) and \( (2x^2 + x - 3) \)[/tex], we'll use the distributive property:
[tex]\[ (x^2 - 5x) (2x^2 + x - 3) \]\\\\= x^2(2x^2 + x - 3) - 5x(2x^2 + x - 3) \]\\\\= 2x^4 + x^3 - 3x^2 - 10x^3 - 5x^2 + 15x \][/tex]
[tex]\[ = 2x^4 + (x^3 - 10x^3) + (-3x^2 - 5x^2) + 15x \]\\\\= 2x^4 - 9x^3 - 8x^2 + 15x \][/tex]
Therefore, the correct option is [tex]\( \boxed{\text{OB. } 2x^4 - 9x^3 - 8x^2 + 15x} \).[/tex]
The resultant of the given expression (x² - 5x) (2x²+x-3) is 2x^4 - 7x^3 -8 x^2 + 15x .
What is Algebraic expression ?
Algebraic expression can be defined as the combination of variables and constants.
Given expression,
(x² - 5x) (2x²+x-3)
= x^2 ( 2x^2+x-3) - 5x(2x^2 + x - 3)
= 2x^4 + x^3 - 3x^2 - 5x * 2x^2 + x*-5x - 3 * -5x
= 2x^4 + x^3 -3x^2 - 10 x^3 - 5x^2 + 15x
= 2x^4 + x^3 - 10x^3 -3x^2 - 5x^2 + 15x
= 2x^4 - 7x^3 -8 x^2 + 15x .
Hence, The resultant of the given expression (x² - 5x) (2x²+x-3) is 2x^4 - 7x^3 -8 x^2 + 15x .
To learn more about Algebraic expression from the given link.
brainly.com/question/953809
#SPJ1