High School

Multiply \((x^2 - 5x) (2x^2 + x - 3)\).

A. \(2x^4 + 9x^3 - 8x^2 + 15x\)
B. \(2x^4 - 9x^3 - 8x^2 + 15x\)
C. \(4x + 9x^3 - 8x^2 + 15x\)
D. \(2 - 9x^3 - 9x^2 - 15x\)

Answer :

The expressions [tex]\( (x^2 - 5x) \) and \( (2x^2 + x - 3) \)[/tex] correct option is [tex]\( \boxed{\text{OB. } 2x^4 - 9x^3 - 8x^2 + 15x} \).[/tex]

To multiply the expressions [tex]\( (x^2 - 5x) \) and \( (2x^2 + x - 3) \)[/tex], we'll use the distributive property:

[tex]\[ (x^2 - 5x) (2x^2 + x - 3) \]\\\\= x^2(2x^2 + x - 3) - 5x(2x^2 + x - 3) \]\\\\= 2x^4 + x^3 - 3x^2 - 10x^3 - 5x^2 + 15x \][/tex]

[tex]\[ = 2x^4 + (x^3 - 10x^3) + (-3x^2 - 5x^2) + 15x \]\\\\= 2x^4 - 9x^3 - 8x^2 + 15x \][/tex]

Therefore, the correct option is [tex]\( \boxed{\text{OB. } 2x^4 - 9x^3 - 8x^2 + 15x} \).[/tex]

The resultant of the given expression (x² - 5x) (2x²+x-3) is 2x^4 - 7x^3 -8 x^2 + 15x .

What is Algebraic expression ?

Algebraic expression can be defined as the combination of variables and constants.

Given expression,

(x² - 5x) (2x²+x-3)

= x^2 ( 2x^2+x-3) - 5x(2x^2 + x - 3)

= 2x^4 + x^3 - 3x^2 - 5x * 2x^2 + x*-5x - 3 * -5x

= 2x^4 + x^3 -3x^2 - 10 x^3 - 5x^2 + 15x

= 2x^4 + x^3 - 10x^3 -3x^2 - 5x^2 + 15x

= 2x^4 - 7x^3 -8 x^2 + 15x .

Hence, The resultant of the given expression (x² - 5x) (2x²+x-3) is 2x^4 - 7x^3 -8 x^2 + 15x .

To learn more about Algebraic expression from the given link.

brainly.com/question/953809

#SPJ1