College

Multiply the polynomials:

[tex]\left(8x^2 + 6x + 8\right)(6x - 5)[/tex]

A. [tex]48x^3 - 4x^2 + 18x - 40[/tex]
B. [tex]48x^3 - 4x^2 + 18x + 40[/tex]
C. [tex]48x^3 - 76x^2 + 18x - 40[/tex]
D. [tex]48x^3 - 4x^2 + 78x - 40[/tex]

Answer :

To solve the problem of multiplying the polynomials [tex]\( (8x^2 + 6x + 8) \)[/tex] and [tex]\( (6x - 5) \)[/tex], let's follow these steps:

1. Distribute Each Term in the First Polynomial:

We'll distribute each term in the first polynomial [tex]\( (8x^2 + 6x + 8) \)[/tex] with each term in the second polynomial [tex]\( (6x - 5) \)[/tex]. This involves using the distributive property for multiplication.

2. Multiply Each Pair of Terms:

- Multiply [tex]\( 8x^2 \)[/tex] by each term in [tex]\( (6x - 5) \)[/tex]:
- [tex]\( 8x^2 \times 6x = 48x^3 \)[/tex]
- [tex]\( 8x^2 \times (-5) = -40x^2 \)[/tex]

- Multiply [tex]\( 6x \)[/tex] by each term in [tex]\( (6x - 5) \)[/tex]:
- [tex]\( 6x \times 6x = 36x^2 \)[/tex]
- [tex]\( 6x \times (-5) = -30x \)[/tex]

- Multiply [tex]\( 8 \)[/tex] by each term in [tex]\( (6x - 5) \)[/tex]:
- [tex]\( 8 \times 6x = 48x \)[/tex]
- [tex]\( 8 \times (-5) = -40 \)[/tex]

3. Combine All the Products:

After computing these products, we bring all the terms together:
[tex]\[
48x^3 - 40x^2 + 36x^2 - 30x + 48x - 40
\][/tex]

4. Combine Like Terms:

- Combine the [tex]\( x^2 \)[/tex] terms:
[tex]\( -40x^2 + 36x^2 = -4x^2 \)[/tex]

- Combine the [tex]\( x \)[/tex] terms:
[tex]\( -30x + 48x = 18x \)[/tex]

5. Write the Final Expression:

After combining like terms, the expression simplifies to:
[tex]\[
48x^3 - 4x^2 + 18x - 40
\][/tex]

This matches Choice A:
[tex]\[ \boxed{48x^3 - 4x^2 + 18x - 40} \][/tex]