College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the polynomials:

[tex]\left(7x^2 + 5x + 7\right)(4x - 6)[/tex]

A. [tex]28x^3 - 62x^2 - 2x - 42[/tex]
B. [tex]28x^3 - 22x^2 - 2x - 42[/tex]
C. [tex]28x^3 - 22x^2 - 58x - 42[/tex]
D. [tex]28x^3 - 22x^2 - 2x + 42[/tex]

Answer :

Sure! Let's multiply the polynomials [tex]\((7x^2 + 5x + 7)\)[/tex] and [tex]\((4x - 6)\)[/tex] step-by-step:

1. Distribute each term in the first polynomial to each term in the second polynomial:

- Multiply [tex]\(7x^2\)[/tex] by each term in the second polynomial:
- [tex]\(7x^2 \times 4x = 28x^3\)[/tex]
- [tex]\(7x^2 \times -6 = -42x^2\)[/tex]

- Multiply [tex]\(5x\)[/tex] by each term in the second polynomial:
- [tex]\(5x \times 4x = 20x^2\)[/tex]
- [tex]\(5x \times -6 = -30x\)[/tex]

- Multiply [tex]\(7\)[/tex] by each term in the second polynomial:
- [tex]\(7 \times 4x = 28x\)[/tex]
- [tex]\(7 \times -6 = -42\)[/tex]

2. Combine like terms:

- The [tex]\(x^3\)[/tex] term: [tex]\(28x^3\)[/tex]
- The [tex]\(x^2\)[/tex] terms: [tex]\(-42x^2 + 20x^2 = -22x^2\)[/tex]
- The [tex]\(x\)[/tex] terms: [tex]\(-30x + 28x = -2x\)[/tex]
- The constant term: [tex]\(-42\)[/tex]

3. Write the combined expression:

The result of multiplying the two polynomials is:

[tex]\[
28x^3 - 22x^2 - 2x - 42
\][/tex]

So, the correct answer is option B: [tex]\(28x^3 - 22x^2 - 2x - 42\)[/tex].