College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the polynomials:

[tex]\left(7x^2 + 5x + 7\right)(4x - 6)[/tex]

A. [tex]28x^3 - 22x^2 - 58x - 42[/tex]
B. [tex]28x^3 - 22x^2 - 2x - 42[/tex]
C. [tex]28x^3 - 62x^2 - 2x - 42[/tex]
D. [tex]28x^3 - 22x^2 - 2x + 42[/tex]

Answer :

Let's multiply the polynomials [tex]\((7x^2 + 5x + 7)(4x - 6)\)[/tex] step-by-step:

1. Distribute each term in the first polynomial by every term in the second polynomial:

- Multiply [tex]\(7x^2\)[/tex] by [tex]\(4x\)[/tex] to get [tex]\(28x^3\)[/tex].
- Multiply [tex]\(7x^2\)[/tex] by [tex]\(-6\)[/tex] to get [tex]\(-42x^2\)[/tex].

- Multiply [tex]\(5x\)[/tex] by [tex]\(4x\)[/tex] to get [tex]\(20x^2\)[/tex].
- Multiply [tex]\(5x\)[/tex] by [tex]\(-6\)[/tex] to get [tex]\(-30x\)[/tex].

- Multiply [tex]\(7\)[/tex] by [tex]\(4x\)[/tex] to get [tex]\(28x\)[/tex].
- Multiply [tex]\(7\)[/tex] by [tex]\(-6\)[/tex] to get [tex]\(-42\)[/tex].

2. Combine the results to form a new polynomial:

[tex]\[
28x^3 + (-42x^2) + 20x^2 + (-30x) + 28x + (-42)
\][/tex]

3. Combine like terms:

- Combine the [tex]\(x^2\)[/tex] terms: [tex]\(-42x^2 + 20x^2 = -22x^2\)[/tex].
- Combine the [tex]\(x\)[/tex] terms: [tex]\(-30x + 28x = -2x\)[/tex].

4. Final polynomial:

[tex]\[
28x^3 - 22x^2 - 2x - 42
\][/tex]

This matches answer choice B: [tex]\(\boxed{28x^3 - 22x^2 - 2x - 42}\)[/tex].