College

Multiply the polynomials:

[tex]\left(4x^2 + 4x + 6\right)(7x + 5)[/tex]

A. [tex]28x^3 + 48x^2 + 62x + 30[/tex]
B. [tex]28x^3 + 8x^2 + 22x + 30[/tex]
C. [tex]28x^3 - 40x^2 + 70x + 30[/tex]
D. [tex]28x^3 + 8x^2 + 22x - 30[/tex]

Answer :

Sure, let's multiply the polynomials [tex]\((4x^2 + 4x + 6)(7x + 5)\)[/tex] step by step.

1. Distribute each term in the first polynomial with each term in the second polynomial:

- Multiply [tex]\(4x^2\)[/tex] by each term in [tex]\(7x + 5\)[/tex]:
- [tex]\(4x^2 \cdot 7x = 28x^3\)[/tex]
- [tex]\(4x^2 \cdot 5 = 20x^2\)[/tex]

- Multiply [tex]\(4x\)[/tex] by each term in [tex]\(7x + 5\)[/tex]:
- [tex]\(4x \cdot 7x = 28x^2\)[/tex]
- [tex]\(4x \cdot 5 = 20x\)[/tex]

- Multiply [tex]\(6\)[/tex] by each term in [tex]\(7x + 5\)[/tex]:
- [tex]\(6 \cdot 7x = 42x\)[/tex]
- [tex]\(6 \cdot 5 = 30\)[/tex]

2. Combine all the products:

[tex]\[
28x^3 + 20x^2 + 28x^2 + 20x + 42x + 30
\][/tex]

3. Combine like terms:

- Combine [tex]\(x^2\)[/tex] terms:
[tex]\[20x^2 + 28x^2 = 48x^2\][/tex]

- Combine [tex]\(x\)[/tex] terms:
[tex]\[20x + 42x = 62x\][/tex]

4. Write the final expression:

[tex]\[
28x^3 + 48x^2 + 62x + 30
\][/tex]

The expanded polynomial is [tex]\(28x^3 + 48x^2 + 62x + 30\)[/tex], which corresponds to option A.