College

Multiply the polynomials.

[tex](8x^2 + 6x + 8)(6x - 5)[/tex]

A. [tex]48x^3 - 4x^2 + 18x - 40[/tex]

B. [tex]48x^3 - 76x^2 + 18x - 40[/tex]

C. [tex]48x^3 - 4x^2 + 78x - 40[/tex]

D. [tex]48x^3 - 4x^2 + 18x + 40[/tex]

Answer :

To multiply the polynomials [tex]\((8x^2 + 6x + 8)(6x - 5)\)[/tex], we will use the distributive property to multiply each term in the first polynomial by each term in the second polynomial. Here are the steps:

1. Multiply [tex]\(8x^2\)[/tex] by each term in the second polynomial:

- [tex]\(8x^2 \times 6x = 48x^3\)[/tex]
- [tex]\(8x^2 \times -5 = -40x^2\)[/tex]

2. Multiply [tex]\(6x\)[/tex] by each term in the second polynomial:

- [tex]\(6x \times 6x = 36x^2\)[/tex]
- [tex]\(6x \times -5 = -30x\)[/tex]

3. Multiply [tex]\(8\)[/tex] by each term in the second polynomial:

- [tex]\(8 \times 6x = 48x\)[/tex]
- [tex]\(8 \times -5 = -40\)[/tex]

4. Combine all these results:

- [tex]\(48x^3\)[/tex] (from step 1)
- [tex]\(-40x^2 + 36x^2 = -4x^2\)[/tex] (combine like terms from steps 1 and 2)
- [tex]\(-30x + 48x = 18x\)[/tex] (combine like terms from steps 2 and 3)
- [tex]\(-40\)[/tex] (from step 3)

5. Write the final polynomial expression:

The result is [tex]\(48x^3 - 4x^2 + 18x - 40\)[/tex].

This matches option A: [tex]\(48x^3 - 4x^2 + 18x - 40\)[/tex].