High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the following polynomials:

[tex]
\left(3x^2 - 4x + 5\right)\left(x^2 - 3x + 2\right)
[/tex]

Choose the correct answer:

A. [tex]3x^4 + 12x^2 + 10[/tex]

B. [tex]3x^4 + 10x^2 + 12x + 10[/tex]

C. [tex]3x^4 - 13x^3 + 23x^2 - 23x + 10[/tex]

D. [tex]4x^2 - 7x + 7[/tex]

Answer :

To multiply the polynomials [tex]\((3x^2 - 4x + 5)\)[/tex] and [tex]\((x^2 - 3x + 2)\)[/tex], we use the distributive property, also known as the FOIL method for binomials.

Let's multiply each term in the first polynomial by each term in the second polynomial:

1. First Term: [tex]\(3x^2 \cdot x^2 = 3x^4\)[/tex]

2. Outer Term: [tex]\(3x^2 \cdot (-3x) = -9x^3\)[/tex]

3. Inner Term: [tex]\(3x^2 \cdot 2 = 6x^2\)[/tex]

4. Second Term: [tex]\(-4x \cdot x^2 = -4x^3\)[/tex]

5. Outer Term: [tex]\(-4x \cdot (-3x) = 12x^2\)[/tex]

6. Inner Term: [tex]\(-4x \cdot 2 = -8x\)[/tex]

7. Third Term: [tex]\(5 \cdot x^2 = 5x^2\)[/tex]

8. Outer Term: [tex]\(5 \cdot (-3x) = -15x\)[/tex]

9. Inner Term: [tex]\(5 \cdot 2 = 10\)[/tex]

Now, let's add all these results together:

- Combine all the terms:
- [tex]\(3x^4\)[/tex]
- [tex]\(-9x^3 - 4x^3 = -13x^3\)[/tex]
- [tex]\(6x^2 + 12x^2 + 5x^2 = 23x^2\)[/tex]
- [tex]\(-8x - 15x = -23x\)[/tex]
- [tex]\(+10\)[/tex]

The final result is:

[tex]\[3x^4 - 13x^3 + 23x^2 - 23x + 10\][/tex]

Thus, the correct option is:

C. [tex]\(3x^4 - 13x^3 + 23x^2 - 23x + 10\)[/tex]