College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the following expressions:

[tex]\left(3x^2 - 4x + 5\right)\left(x^2 - 3x + 2\right)[/tex]

A. [tex]3x^4 + 12x^2 + 10[/tex]

B. [tex]3x^4 + 10x^2 + 12x + 10[/tex]

C. [tex]4x^2 - 7x + 7[/tex]

D. [tex]3x^4 - 13x^3 + 23x^2 - 23x + 10[/tex]

Answer :

To solve the multiplication of the polynomials [tex]\((3x^2 - 4x + 5)\)[/tex] and [tex]\((x^2 - 3x + 2)\)[/tex], we need to use the distributive property, also known as the FOIL method when dealing with binomials. Here's a step-by-step breakdown:

1. Expand the expression: Multiply each term in the first polynomial by each term in the second polynomial.

- Multiply [tex]\(3x^2\)[/tex] with each term in the second polynomial:
- [tex]\(3x^2 \cdot x^2 = 3x^4\)[/tex]
- [tex]\(3x^2 \cdot (-3x) = -9x^3\)[/tex]
- [tex]\(3x^2 \cdot 2 = 6x^2\)[/tex]

- Multiply [tex]\(-4x\)[/tex] with each term in the second polynomial:
- [tex]\(-4x \cdot x^2 = -4x^3\)[/tex]
- [tex]\(-4x \cdot (-3x) = 12x^2\)[/tex]
- [tex]\(-4x \cdot 2 = -8x\)[/tex]

- Multiply [tex]\(5\)[/tex] with each term in the second polynomial:
- [tex]\(5 \cdot x^2 = 5x^2\)[/tex]
- [tex]\(5 \cdot (-3x) = -15x\)[/tex]
- [tex]\(5 \cdot 2 = 10\)[/tex]

2. Combine like terms: Gather all similar terms together and add them.

- Combine all [tex]\(x^4\)[/tex] terms: [tex]\(3x^4\)[/tex]
- Combine all [tex]\(x^3\)[/tex] terms: [tex]\(-9x^3 - 4x^3 = -13x^3\)[/tex]
- Combine all [tex]\(x^2\)[/tex] terms: [tex]\(6x^2 + 12x^2 + 5x^2 = 23x^2\)[/tex]
- Combine all [tex]\(x\)[/tex] terms: [tex]\(-8x - 15x = -23x\)[/tex]
- Combine constant terms: [tex]\(10\)[/tex]

Putting it all together, we have:

[tex]\[3x^4 - 13x^3 + 23x^2 - 23x + 10\][/tex]

Hence, the correct answer to the multiplication is:

[tex]\[3x^4 - 13x^3 + 23x^2 - 23x + 10\][/tex]

The correct choice from the provided options is:

D. [tex]\(3x^4 - 13x^3 + 23x^2 - 23x + 10\)[/tex]