College

Multiply the following expression:

[tex](x^4 + 1)(3x^2 + 9x + 2)[/tex]

A. [tex]x^4 + 3x^2 + 9x + 3[/tex]

B. [tex]3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2[/tex]

C. [tex]3x^7 + 9x^6 + 2x^5[/tex]

D. [tex]x^8 + 9x^4 + 2x^4 + 3x^2 + 9x + 2[/tex]

Answer :

Sure! To solve the problem of multiplying the two expressions [tex]\((x^4 + 1)\)[/tex] and [tex]\((3x^2 + 9x + 2)\)[/tex], we can use the distributive property to expand the expressions step by step. Here's how you do it:

1. Distribute each term in the first expression [tex]\((x^4 + 1)\)[/tex] to every term in the second expression [tex]\((3x^2 + 9x + 2)\)[/tex].

2. Start by distributing [tex]\(x^4\)[/tex] across the terms in [tex]\((3x^2 + 9x + 2)\)[/tex]:
- Multiply [tex]\(x^4\)[/tex] by [tex]\(3x^2\)[/tex]: [tex]\(x^4 \times 3x^2 = 3x^6\)[/tex]
- Multiply [tex]\(x^4\)[/tex] by [tex]\(9x\)[/tex]: [tex]\(x^4 \times 9x = 9x^5\)[/tex]
- Multiply [tex]\(x^4\)[/tex] by [tex]\(2\)[/tex]: [tex]\(x^4 \times 2 = 2x^4\)[/tex]

3. Now distribute [tex]\(1\)[/tex] across the terms in [tex]\((3x^2 + 9x + 2)\)[/tex]:
- Multiply [tex]\(1\)[/tex] by [tex]\(3x^2\)[/tex]: [tex]\(1 \times 3x^2 = 3x^2\)[/tex]
- Multiply [tex]\(1\)[/tex] by [tex]\(9x\)[/tex]: [tex]\(1 \times 9x = 9x\)[/tex]
- Multiply [tex]\(1\)[/tex] by [tex]\(2\)[/tex]: [tex]\(1 \times 2 = 2\)[/tex]

4. Combine all the products:
- [tex]\(3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2\)[/tex]

So, the expanded result of multiplying the two expressions is:

[tex]\[3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2\][/tex]

This is your final answer!