College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the expressions:

[tex] \left(x^2 - 5x\right)\left(2x^2 + x - 3\right) [/tex]

Choose the correct option:

A. [tex] 2x^4 - 9x^3 - 9x^2 - 15x [/tex]

B. [tex] 2x^4 - 9x^3 - 8x^2 + 15x [/tex]

C. [tex] 2x^4 + 9x^3 - 8x^2 + 15x [/tex]

D. [tex] 4x^4 + 9x^3 - 8x^2 + 15x [/tex]

Answer :

To multiply the polynomials [tex]\((x^2 - 5x)\)[/tex] and [tex]\((2x^2 + x - 3)\)[/tex], we'll use the distributive property (also known as the FOIL method when dealing with binomials). Here is a step-by-step breakdown:

1. Distribute [tex]\(x^2\)[/tex] from the first polynomial to each term in the second polynomial:

[tex]\[
x^2 \cdot (2x^2 + x - 3) = x^2 \cdot 2x^2 + x^2 \cdot x - x^2 \cdot 3
\][/tex]

[tex]\[
= 2x^4 + x^3 - 3x^2
\][/tex]

2. Distribute [tex]\(-5x\)[/tex] from the first polynomial to each term in the second polynomial:

[tex]\[
-5x \cdot (2x^2 + x - 3) = -5x \cdot 2x^2 - 5x \cdot x + 5x \cdot 3
\][/tex]

[tex]\[
= -10x^3 - 5x^2 + 15x
\][/tex]

3. Add the results of the two distributions together:

[tex]\[
(2x^4 + x^3 - 3x^2) + (-10x^3 - 5x^2 + 15x)
\][/tex]

4. Combine like terms:

- For [tex]\(x^4\)[/tex], we have: [tex]\(2x^4\)[/tex]
- For [tex]\(x^3\)[/tex], we combine [tex]\(x^3 - 10x^3 = -9x^3\)[/tex]
- For [tex]\(x^2\)[/tex], we combine [tex]\(-3x^2 - 5x^2 = -8x^2\)[/tex]
- For [tex]\(x\)[/tex], we have: [tex]\(15x\)[/tex]

5. Write the final expression:

[tex]\[
2x^4 - 9x^3 - 8x^2 + 15x
\][/tex]

The correct answer is B. [tex]\(2x^4 - 9x^3 - 8x^2 + 15x\)[/tex].