High School

Multiply:

[tex]\left(x^4+1\right)\left(3x^2+9x+2\right)[/tex]

Options:

A. [tex]3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2[/tex]

B. [tex]3x^8 + 9x^4 + 2x^4 + 3x^2 + 9x + 2[/tex]

C. [tex]x^4 + 3x^2 + 9x + 3[/tex]

D. [tex]3x^7 + 9x^6 + 2x^5[/tex]

Answer :

Let's multiply the polynomials [tex]\((x^4 + 1)\)[/tex] and [tex]\((3x^2 + 9x + 2)\)[/tex] step-by-step:

1. Distribute each term in the first polynomial to every term in the second polynomial:

- Multiply [tex]\(x^4\)[/tex] by each term in the second polynomial:

[tex]\[
x^4 \cdot (3x^2) = 3x^6
\][/tex]

[tex]\[
x^4 \cdot (9x) = 9x^5
\][/tex]

[tex]\[
x^4 \cdot 2 = 2x^4
\][/tex]

- Multiply [tex]\(1\)[/tex] by each term in the second polynomial:

[tex]\[
1 \cdot (3x^2) = 3x^2
\][/tex]

[tex]\[
1 \cdot (9x) = 9x
\][/tex]

[tex]\[
1 \cdot 2 = 2
\][/tex]

2. Combine all these products:

The results from the distribution step are:

[tex]\[
3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2
\][/tex]

3. Write the final expression:

The resulting polynomial after multiplication is:

[tex]\[
3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2
\][/tex]

Therefore, the answer is [tex]\(3x^6 + 9x^5 + 2x^4 + 3x^2 + 9x + 2\)[/tex].