Answer :
Sure! Let's go through the steps to solve the problem of multiplying the terms:
We have the expression:
[tex]\[ 3x^6(12x^7 - 7x^6 + 6) \][/tex]
To multiply, we'll distribute the term [tex]\(3x^6\)[/tex] across each term inside the parentheses.
1. Multiply [tex]\(3x^6\)[/tex] by [tex]\(12x^7\)[/tex]:
[tex]\[
3x^6 \times 12x^7 = 36x^{6+7} = 36x^{13}
\][/tex]
2. Multiply [tex]\(3x^6\)[/tex] by [tex]\(-7x^6\)[/tex]:
[tex]\[
3x^6 \times -7x^6 = -21x^{6+6} = -21x^{12}
\][/tex]
3. Multiply [tex]\(3x^6\)[/tex] by [tex]\(6\)[/tex]:
[tex]\[
3x^6 \times 6 = 18x^6
\][/tex]
Now, combine all the terms together:
[tex]\[ 36x^{13} - 21x^{12} + 18x^6 \][/tex]
So, the result of multiplying the expression is:
[tex]\[ 36x^{13} - 21x^{12} + 18x^6 \][/tex]
We have the expression:
[tex]\[ 3x^6(12x^7 - 7x^6 + 6) \][/tex]
To multiply, we'll distribute the term [tex]\(3x^6\)[/tex] across each term inside the parentheses.
1. Multiply [tex]\(3x^6\)[/tex] by [tex]\(12x^7\)[/tex]:
[tex]\[
3x^6 \times 12x^7 = 36x^{6+7} = 36x^{13}
\][/tex]
2. Multiply [tex]\(3x^6\)[/tex] by [tex]\(-7x^6\)[/tex]:
[tex]\[
3x^6 \times -7x^6 = -21x^{6+6} = -21x^{12}
\][/tex]
3. Multiply [tex]\(3x^6\)[/tex] by [tex]\(6\)[/tex]:
[tex]\[
3x^6 \times 6 = 18x^6
\][/tex]
Now, combine all the terms together:
[tex]\[ 36x^{13} - 21x^{12} + 18x^6 \][/tex]
So, the result of multiplying the expression is:
[tex]\[ 36x^{13} - 21x^{12} + 18x^6 \][/tex]