College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply the polynomials:

[tex](4x^2 + 4x + 6)(7x + 5)[/tex]

A. [tex]28x^3 + 8x^2 + 22x - 30[/tex]

B. [tex]28x^3 + 8x^2 + 22x + 30[/tex]

C. [tex]28x^3 - 40x^2 + 70x + 30[/tex]

D. [tex]28x^3 + 48x^2 + 62x + 30[/tex]

Answer :

To multiply the polynomials
[tex]$$
(4x^2+4x+6)(7x+5),
$$[/tex]
follow these steps:

1. Multiply each term in the first polynomial by the entire second polynomial:

- Multiply the first term [tex]$4x^2$[/tex] by [tex]$(7x+5)$[/tex]:
[tex]$$
4x^2 \cdot 7x = 28x^3 \quad \text{and} \quad 4x^2 \cdot 5 = 20x^2.
$$[/tex]
So,
[tex]$$
4x^2(7x+5) = 28x^3 + 20x^2.
$$[/tex]

2. Multiply the second term [tex]$4x$[/tex] by [tex]$(7x+5)$[/tex]:
[tex]$$
4x \cdot 7x = 28x^2 \quad \text{and} \quad 4x \cdot 5 = 20x.
$$[/tex]
Thus,
[tex]$$
4x(7x+5) = 28x^2 + 20x.
$$[/tex]

3. Multiply the third term [tex]$6$[/tex] by [tex]$(7x+5)$[/tex]:
[tex]$$
6 \cdot 7x = 42x \quad \text{and} \quad 6 \cdot 5 = 30.
$$[/tex]
Therefore,
[tex]$$
6(7x+5) = 42x + 30.
$$[/tex]

4. Add all the results together and combine like terms:

Write the sum:
[tex]$$
(28x^3 + 20x^2) + (28x^2 + 20x) + (42x + 30).
$$[/tex]

Now, combine like terms:

- The cubic term:
[tex]$$
28x^3.
$$[/tex]

- The quadratic terms:
[tex]$$
20x^2 + 28x^2 = 48x^2.
$$[/tex]

- The linear terms:
[tex]$$
20x + 42x = 62x.
$$[/tex]

- The constant term:
[tex]$$
30.
$$[/tex]

Hence, the final result is:
[tex]$$
28x^3 + 48x^2 + 62x + 30.
$$[/tex]

Comparing the result with the provided answer choices, the correct answer is:

D. [tex]$$28x^3+48x^2+62x+30.$$[/tex]