High School

Michael graphs the equations [tex] y = -\frac{1}{2} x + 4 [/tex] and [tex] y = x + 1 [/tex] to solve the equation [tex] -\frac{1}{2} x + 4 = x + 1 [/tex].

What are the solution(s) of [tex] -\frac{1}{2} x + 4 = x + 1 [/tex]?

Answer :

To find the solution to the equation [tex]\( -\frac{1}{2} x + 4 = x + 1 \)[/tex], you can follow these steps:

1. Move all terms involving [tex]\( x \)[/tex] to one side of the equation:
[tex]\[ -\frac{1}{2} x + 4 = x + 1 \][/tex]
Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ -\frac{1}{2} x - x + 4 = 1 \][/tex]

2. Combine like terms:
[tex]\[ -\frac{1}{2} x - x = -\frac{1}{2} x - \frac{2}{2} x = -\frac{3}{2} x \][/tex]
So the equation now is:
[tex]\[ -\frac{3}{2} x + 4 = 1 \][/tex]

3. Move the constant term to the other side of the equation by subtracting 4 from both sides:
[tex]\[ -\frac{3}{2} x + 4 - 4 = 1 - 4 \][/tex]
[tex]\[ -\frac{3}{2} x = -3 \][/tex]

4. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by [tex]\( -\frac{3}{2} \)[/tex]:
[tex]\[ x = \frac{-3}{-\frac{3}{2}} \][/tex]

5. Simplify the fraction:
[tex]\[ x = -3 \div -\frac{3}{2} = -3 \times -\frac{2}{3} = 2 \][/tex]

So the solution to the equation [tex]\( -\frac{1}{2} x + 4 = x + 1 \)[/tex] is [tex]\( x = 2 \)[/tex].

This means that the two lines [tex]\( y = -\frac{1}{2} x + 4 \)[/tex] and [tex]\( y = x + 1 \)[/tex] intersect at the point where [tex]\( x = 2 \)[/tex].