High School

Match each expression with the correct product:

1. [tex]-8x(2x^2 + 5x + 8)[/tex]
- a. [tex]35x^5 + 21x^4 + 7x^3[/tex]
- d. [tex]-16x^3 - 40x^2 - 64x[/tex]

2. [tex]x^2(5x^2 - 4x + 6)[/tex]
- c. [tex]5x^4 - 4x^3 + 6x^2[/tex]

3. [tex]7x^3(5x^2 + 3x + 1)[/tex]
- a. [tex]35x^5 + 21x^4 + 7x^3[/tex]

4. [tex]3x^3(-x^3 + 3x^2 + 2x - 2)[/tex]
- e. [tex]-3x^6 + 9x^5 + 6x^4 - 6x^3[/tex]

5. [tex]-4x^5(11x^3 + 2x^2 + 9x + 1)[/tex]
- b. [tex]-44x^8 - 8x^7 - 36x^6 - 4x^5[/tex]

Answer :

To match each expression with the correct product, let's distribute each expression step by step:

1. Expression 1: [tex]\(-8x(2x^2 + 5x + 8)\)[/tex]

- Distribute [tex]\(-8x\)[/tex] to each term:
- [tex]\(-8x \times 2x^2 = -16x^3\)[/tex]
- [tex]\(-8x \times 5x = -40x^2\)[/tex]
- [tex]\(-8x \times 8 = -64x\)[/tex]

The product is: [tex]\(-16x^3 - 40x^2 - 64x\)[/tex]

This matches with option d.

2. Expression 2: [tex]\(x^2(5x^2 - 4x + 6)\)[/tex]

- Distribute [tex]\(x^2\)[/tex] to each term:
- [tex]\(x^2 \times 5x^2 = 5x^4\)[/tex]
- [tex]\(x^2 \times -4x = -4x^3\)[/tex]
- [tex]\(x^2 \times 6 = 6x^2\)[/tex]

The product is: [tex]\(5x^4 - 4x^3 + 6x^2\)[/tex]

This matches with option c.

3. Expression 3: [tex]\(7x^3(5x^2 + 3x + 1)\)[/tex]

- Distribute [tex]\(7x^3\)[/tex] to each term:
- [tex]\(7x^3 \times 5x^2 = 35x^5\)[/tex]
- [tex]\(7x^3 \times 3x = 21x^4\)[/tex]
- [tex]\(7x^3 \times 1 = 7x^3\)[/tex]

The product is: [tex]\(35x^5 + 21x^4 + 7x^3\)[/tex]

This matches with option a.

4. Expression 4: [tex]\(3x^3(-x^3 + 3x^2 + 2x - 2)\)[/tex]

- Distribute [tex]\(3x^3\)[/tex] to each term:
- [tex]\(3x^3 \times -x^3 = -3x^6\)[/tex]
- [tex]\(3x^3 \times 3x^2 = 9x^5\)[/tex]
- [tex]\(3x^3 \times 2x = 6x^4\)[/tex]
- [tex]\(3x^3 \times -2 = -6x^3\)[/tex]

The product is: [tex]\(-3x^6 + 9x^5 + 6x^4 - 6x^3\)[/tex]

This matches with option e.

5. Expression 5: [tex]\(-4x^5(11x^3 + 2x^2 + 9x + 1)\)[/tex]

- Distribute [tex]\(-4x^5\)[/tex] to each term:
- [tex]\(-4x^5 \times 11x^3 = -44x^8\)[/tex]
- [tex]\(-4x^5 \times 2x^2 = -8x^7\)[/tex]
- [tex]\(-4x^5 \times 9x = -36x^6\)[/tex]
- [tex]\(-4x^5 \times 1 = -4x^5\)[/tex]

The product is: [tex]\(-44x^8 - 8x^7 - 36x^6 - 4x^5\)[/tex]

This matches with option b.

In summary, the correct matches are:
- 1: d
- 2: c
- 3: a
- 4: e
- 5: b