College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Lesson 3.8: Multiplying Fractions

Calculate each product and simplify if necessary.

1) [tex]\frac{3}{8} \cdot \frac{4}{9}[/tex]

2) [tex]\frac{3}{8} \cdot \frac{4}{9} \cdot \frac{12}{72}[/tex]

3) [tex]\frac{2}{9} \cdot \frac{1}{4} \cdot \frac{2}{3,612}[/tex]

4) [tex]\frac{5}{6} \cdot \frac{12}{13} \cdot \frac{60}{78}[/tex]

5) [tex]\frac{5}{6} \cdot \frac{4}{9}[/tex]

6) [tex]\frac{18}{20} \cdot \frac{5}{9}[/tex]

7) [tex]\frac{3}{28} \cdot \frac{4}{15}[/tex]

Answer :

Sure! Let's go through each problem step-by-step to understand how we multiply and simplify fractions.

### 1) [tex]\(\frac{3}{8} \cdot \frac{4}{9} \cdot \frac{3}{8} : \frac{4}{9} \frac{12}{72}\)[/tex]

First, calculate the product of the fractions:

Multiply the numerators: [tex]\(3 \times 4 \times 3 = 36\)[/tex]

Multiply the denominators: [tex]\(8 \times 9 \times 8 = 576\)[/tex]

Now simplify the fraction [tex]\(\frac{36}{576}\)[/tex]:

The greatest common divisor (GCD) of 36 and 576 is 36.

[tex]\(\frac{36}{576} = \frac{1}{16}\)[/tex]

Then divide this by the fraction [tex]\(\frac{4}{9}\)[/tex]:

Dividing by a fraction is the same as multiplying by its reciprocal:

[tex]\(\frac{1}{16} \cdot \frac{9}{4} = \frac{9}{64}\)[/tex]

Now apply the operation with [tex]\(\frac{12}{72}\)[/tex]:

Since you are dividing again, multiply by the reciprocal:

[tex]\(\frac{9}{64} \cdot \frac{72}{12} = \frac{648}{768}\)[/tex]

Simplify [tex]\(\frac{648}{768}\)[/tex]:

The GCD of 648 and 768 is 64.

So, [tex]\(\frac{648}{768} = \frac{1}{124416}\)[/tex]


### 2) [tex]\(\frac{2}{9} \cdot \frac{1}{4} \cdot \frac{2}{3612}\)[/tex]

Multiply the numerators: [tex]\(2 \times 1 \times 2 = 4\)[/tex]

Multiply the denominators: [tex]\(9 \times 4 \times 3612 = 130608\)[/tex]

Simplify [tex]\(\frac{4}{130608}\)[/tex]:

The GCD of 4 and 130608 is 4.

[tex]\(\frac{4}{130608} = \frac{1}{32508}\)[/tex]


### 3) [tex]\(\frac{5}{6} \cdot \frac{12}{13} \cdot \frac{60}{78}\)[/tex]

Multiply the numerators: [tex]\(5 \times 12 \times 60 = 3600\)[/tex]

Multiply the denominators: [tex]\(6 \times 13 \times 78 = 6084\)[/tex]

Simplify [tex]\(\frac{3600}{6084}\)[/tex]:

Divide both the numerator and denominator by their GCD, 36:

[tex]\(\frac{3600}{6084} = \frac{100}{169}\)[/tex]


### 4) [tex]\(\frac{5}{6} \cdot \frac{4}{9}\)[/tex]

Multiply the numerators: [tex]\(5 \times 4 = 20\)[/tex]

Multiply the denominators: [tex]\(6 \times 9 = 54\)[/tex]

Simplify [tex]\(\frac{20}{54}\)[/tex]:

The GCD of 20 and 54 is 2.

[tex]\(\frac{20}{54} = \frac{10}{27}\)[/tex]


### 5) [tex]\(\frac{18}{20} \cdot \frac{5}{9}\)[/tex]

Multiply the numerators: [tex]\(18 \times 5 = 90\)[/tex]

Multiply the denominators: [tex]\(20 \times 9 = 180\)[/tex]

Simplify [tex]\(\frac{90}{180}\)[/tex]:

The GCD of 90 and 180 is 90.

[tex]\(\frac{90}{180} = \frac{1}{2}\)[/tex]


### 6) [tex]\(\frac{3}{28} \cdot \frac{4}{15}\)[/tex]

Multiply the numerators: [tex]\(3 \times 4 = 12\)[/tex]

Multiply the denominators: [tex]\(28 \times 15 = 420\)[/tex]

Simplify [tex]\(\frac{12}{420}\)[/tex]:

The GCD of 12 and 420 is 12.

[tex]\(\frac{12}{420} = \frac{1}{35}\)[/tex]

These are the simplified products of the fractions for each question.