Answer :
To solve the equation [tex]\(\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)\)[/tex], let's go through Karissa's work step-by-step to find the value of [tex]\(x\)[/tex]:
1. Start with the given equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
2. Distribute [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - (x-4)
\][/tex]
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
3. Simplify both sides:
- On the left side: [tex]\(-7 + 11\)[/tex] simplifies to [tex]\(4\)[/tex]
[tex]\[
\frac{1}{2}x + 4
\][/tex]
- On the right side: Combine like terms [tex]\(\frac{1}{2}x - x\)[/tex] simplifies to [tex]\(-\frac{1}{2}x\)[/tex]
[tex]\[
-\frac{1}{2}x + 4
\][/tex]
4. The equation now looks like this:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
5. Subtract [tex]\(4\)[/tex] from both sides to simplify:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
6. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine the [tex]\(x\)[/tex] terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
7. This simplifies to:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
1. Start with the given equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
2. Distribute [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - (x-4)
\][/tex]
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
3. Simplify both sides:
- On the left side: [tex]\(-7 + 11\)[/tex] simplifies to [tex]\(4\)[/tex]
[tex]\[
\frac{1}{2}x + 4
\][/tex]
- On the right side: Combine like terms [tex]\(\frac{1}{2}x - x\)[/tex] simplifies to [tex]\(-\frac{1}{2}x\)[/tex]
[tex]\[
-\frac{1}{2}x + 4
\][/tex]
4. The equation now looks like this:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
5. Subtract [tex]\(4\)[/tex] from both sides to simplify:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
6. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine the [tex]\(x\)[/tex] terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
7. This simplifies to:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].