Answer :
Certainly! Let's solve the equation step-by-step:
The original equation is:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
1. Distribute the fractions and simplify both sides:
Left side:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - 7 + 11 = \frac{1}{2}x + 4
\][/tex]
Right side:
[tex]\[
\frac{1}{2}x - (x-4) = \frac{1}{2}x - x + 4 = -\frac{1}{2}x + 4
\][/tex]
2. Equate the simplified expressions:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
3. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
4. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
[tex]\[
x = 0
\][/tex]
So, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
The original equation is:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
1. Distribute the fractions and simplify both sides:
Left side:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - 7 + 11 = \frac{1}{2}x + 4
\][/tex]
Right side:
[tex]\[
\frac{1}{2}x - (x-4) = \frac{1}{2}x - x + 4 = -\frac{1}{2}x + 4
\][/tex]
2. Equate the simplified expressions:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
3. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
4. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
[tex]\[
x = 0
\][/tex]
So, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].