Answer :
To solve the equation [tex]\( 37 = -4.6 - 3.2n \)[/tex] for [tex]\( n \)[/tex], follow these steps:
1. Add 4.6 to both sides of the equation to isolate the term containing [tex]\( n \)[/tex]:
[tex]\[
37 + 4.6 = -3.2n
\][/tex]
2. Simplify the left-hand side:
[tex]\[
41.6 = -3.2n
\][/tex]
3. Divide both sides by -3.2 to solve for [tex]\( n \)[/tex]:
[tex]\[
n = \frac{41.6}{-3.2}
\][/tex]
4. Perform the division to find the value of [tex]\( n \)[/tex]:
[tex]\[
n \approx -13
\][/tex]
Thus, the value of [tex]\( n \)[/tex] is [tex]\( -13 \)[/tex].
So the correct answer is:
c. -13
1. Add 4.6 to both sides of the equation to isolate the term containing [tex]\( n \)[/tex]:
[tex]\[
37 + 4.6 = -3.2n
\][/tex]
2. Simplify the left-hand side:
[tex]\[
41.6 = -3.2n
\][/tex]
3. Divide both sides by -3.2 to solve for [tex]\( n \)[/tex]:
[tex]\[
n = \frac{41.6}{-3.2}
\][/tex]
4. Perform the division to find the value of [tex]\( n \)[/tex]:
[tex]\[
n \approx -13
\][/tex]
Thus, the value of [tex]\( n \)[/tex] is [tex]\( -13 \)[/tex].
So the correct answer is:
c. -13