Answer :
To solve the equation step-by-step, let's go through the process that Karissa followed:
1. Start with the given equation:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2} x - (x - 4)
\][/tex]
2. Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side, and simplify the right side:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Simplify both sides:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
3. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
4. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to isolate [tex]\(x\)[/tex]:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
5. Combine like terms:
[tex]\[
x = 0
\][/tex]
Thus, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
1. Start with the given equation:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2} x - (x - 4)
\][/tex]
2. Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side, and simplify the right side:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Simplify both sides:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
3. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
4. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to isolate [tex]\(x\)[/tex]:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
5. Combine like terms:
[tex]\[
x = 0
\][/tex]
Thus, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].