High School

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below:

[tex]
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4 \\
\end{array}
[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. [tex]-1[/tex]
B. [tex]\frac{1}{2}[/tex]
C. [tex]0[/tex]
D. [tex]\frac{1}{2}[/tex]

Answer :

Sure! Let's solve the equation step-by-step to find the value of [tex]\(x\)[/tex].

We start with the given equation:

[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

Step 1: Expand both sides of the equation.

Left side: [tex]\(\frac{1}{2}(x - 14) + 11\)[/tex]
- Distribute [tex]\(\frac{1}{2}\)[/tex] inside the parentheses: [tex]\(\frac{1}{2}x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - 7 + 11\)[/tex]

Right side: [tex]\(\frac{1}{2}x - (x - 4)\)[/tex]
- Distribute the negative sign: [tex]\(\frac{1}{2}x - x + 4\)[/tex]

Now the equation looks like this:

[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

Step 2: Simplify both sides.

Left side: [tex]\(\frac{1}{2}x - 7 + 11 = \frac{1}{2}x + 4\)[/tex]

Right side: [tex]\(\frac{1}{2}x - x + 4 = -\frac{1}{2}x + 4\)[/tex]

Now the equation is:

[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Step 3: Subtract 4 from both sides to eliminate the constant term.

[tex]\[
\frac{1}{2}x + 4 - 4 = -\frac{1}{2}x + 4 - 4
\][/tex]

This simplifies to:

[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

Step 4: Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms.

[tex]\[
\frac{1}{2}x + \frac{1}{2}x = -\frac{1}{2}x + \frac{1}{2}x
\][/tex]

Which simplifies to:

[tex]\[
x = 0
\][/tex]

So the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].