College

Karissa begins to solve the equation:

[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4)
\][/tex]

Her work is correct and is shown below:

[tex]\[
\begin{array}{c}
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4) \\
\frac{1}{2} x - 7 + 11 = \frac{1}{2} x - x + 4 \\
\frac{1}{2} x + 4 = -\frac{1}{2} x + 4
\end{array}
\][/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x = -\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]
B. [tex]\(-\frac{1}{2}\)[/tex]
C. 0
D. [tex]\(\frac{1}{2}\)[/tex]