Answer :
Sure! Let's find the sum of [tex]\(-356.1 + 258.6\)[/tex].
To solve this, we follow these steps:
1. Identify the numbers:
- The first number is [tex]\(-356.1\)[/tex].
- The second number is [tex]\(258.6\)[/tex].
2. Add the numbers together:
- Start by adding the absolute values of the numbers: [tex]\(356.1\)[/tex] and [tex]\(258.6\)[/tex].
- When we add [tex]\(356.1\)[/tex] and [tex]\(258.6\)[/tex], we get:
[tex]\[
356.1 + 258.6 = 614.7
\][/tex]
3. Apply the signs:
- Since one of the numbers ([tex]\(-356.1\)[/tex]) is negative, we subtract the smaller absolute value ([tex]\(258.6\)[/tex]) from the larger absolute value ([tex]\(356.1\)[/tex]):
[tex]\[
356.1 - 258.6 = 97.5
\][/tex]
- The original number with the larger absolute value was negative ([tex]\(-356.1\)[/tex]), so the result will have the negative sign:
[tex]\[
-97.5
\][/tex]
Therefore, the sum of [tex]\(-356.1 + 258.6\)[/tex] is [tex]\(-97.5\)[/tex].
So, the answer to your question is:
[tex]\[
-97.5
\][/tex]
To solve this, we follow these steps:
1. Identify the numbers:
- The first number is [tex]\(-356.1\)[/tex].
- The second number is [tex]\(258.6\)[/tex].
2. Add the numbers together:
- Start by adding the absolute values of the numbers: [tex]\(356.1\)[/tex] and [tex]\(258.6\)[/tex].
- When we add [tex]\(356.1\)[/tex] and [tex]\(258.6\)[/tex], we get:
[tex]\[
356.1 + 258.6 = 614.7
\][/tex]
3. Apply the signs:
- Since one of the numbers ([tex]\(-356.1\)[/tex]) is negative, we subtract the smaller absolute value ([tex]\(258.6\)[/tex]) from the larger absolute value ([tex]\(356.1\)[/tex]):
[tex]\[
356.1 - 258.6 = 97.5
\][/tex]
- The original number with the larger absolute value was negative ([tex]\(-356.1\)[/tex]), so the result will have the negative sign:
[tex]\[
-97.5
\][/tex]
Therefore, the sum of [tex]\(-356.1 + 258.6\)[/tex] is [tex]\(-97.5\)[/tex].
So, the answer to your question is:
[tex]\[
-97.5
\][/tex]