High School

Karissa begins to solve the equation [tex]\(\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)\)[/tex]. Her work is correct and is shown below.

[tex]\[

\begin{array}{c}

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\

\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\

\frac{1}{2} x+4=-\frac{1}{2} x+4

\end{array}

\][/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x=-\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]
B. [tex]\(-\frac{1}{2}\)[/tex]
C. 0
D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Sure! Let’s solve the equation step-by-step to find the value of [tex]\( x \)[/tex].

The equation given is:

[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

Step 1: Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side.

[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

Step 2: Simplify both sides.

[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]

Step 3: Move the constant on both sides by subtracting 4 from each side.

[tex]\[
\frac{1}{2}x = \frac{1}{2}x - x
\][/tex]

Step 4: Simplify the right side by combining like terms.

[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

Step 5: To solve this, add [tex]\(\frac{1}{2}x\)[/tex] to both sides to get:

[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].