Answer :
Sure! Let’s solve the equation step-by-step to find the value of [tex]\( x \)[/tex].
The equation given is:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
Step 1: Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side.
[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Step 2: Simplify both sides.
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]
Step 3: Move the constant on both sides by subtracting 4 from each side.
[tex]\[
\frac{1}{2}x = \frac{1}{2}x - x
\][/tex]
Step 4: Simplify the right side by combining like terms.
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Step 5: To solve this, add [tex]\(\frac{1}{2}x\)[/tex] to both sides to get:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].
The equation given is:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]
Step 1: Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side.
[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Step 2: Simplify both sides.
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]
Step 3: Move the constant on both sides by subtracting 4 from each side.
[tex]\[
\frac{1}{2}x = \frac{1}{2}x - x
\][/tex]
Step 4: Simplify the right side by combining like terms.
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Step 5: To solve this, add [tex]\(\frac{1}{2}x\)[/tex] to both sides to get:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].