College

Karissa begins to solve the equation:

[tex]\[ \frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4) \][/tex]

Her work is shown below:

[tex]\[
\begin{array}{c}
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4) \\
\frac{1}{2} x - 7 + 11 = \frac{1}{2} x - x + 4 \\
\frac{1}{2} x + 4 = -\frac{1}{2} x + 4
\end{array}
\][/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x = -\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]

B. [tex]\(-\frac{1}{2}\)[/tex]

C. 0

D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Sure! Let's go through the solution step-by-step to find the value of [tex]\( x \)[/tex] in the equation:

Karissa's work starts with:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

Her first step simplifies the equation:
1. Distribute [tex]\(\frac{1}{2}\)[/tex] through [tex]\((x - 14)\)[/tex]:
[tex]\[
\frac{1}{2}x - 7 + 11
\][/tex]

2. Simplify the right side by distributing the negative sign:
[tex]\[
\frac{1}{2}x - x + 4
\][/tex]

After simplifying, the equation becomes:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Next, she subtracts 4 from both sides of the equation:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

Now we need to solve for [tex]\( x \)[/tex].

3. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides of the equation to combine like terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

4. Simplify the left side:
[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].