High School

Karissa begins to solve the equation:

[tex]
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4)
[/tex]

Her work is correct and is shown below:

[tex]
\begin{array}{c}
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4) \\
\frac{1}{2} x - 7 + 11 = \frac{1}{2} x - x + 4 \\
\frac{1}{2} x + 4 = -\frac{1}{2} x + 4
\end{array}
[/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x = -\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]

B. [tex]\(\frac{1}{2}\)[/tex]

C. 0

D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Sure, let's solve this step by step:

You start with the equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

First, distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2} \times x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - x + 4
\][/tex]

This simplifies to:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

Now, combine like terms on each side. On the left side, [tex]\(-7 + 11\)[/tex] becomes [tex]\(4\)[/tex]:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]

Next, you'll notice that on the right side, [tex]\(\frac{1}{2}x - x\)[/tex] simplifies to [tex]\(-\frac{1}{2}x\)[/tex]:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Now, subtract [tex]\(4\)[/tex] from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to solve for [tex]\(x\)[/tex]:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

Simplify the left side:
[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].