College

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below.

[tex]\begin{array}{c}

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\

\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\

\frac{1}{2} x+4=-\frac{1}{2} x+4

\end{array}[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. [tex]-1[/tex]
B. [tex]\frac{1}{2}[/tex]
C. [tex]0[/tex]
D. [tex]\frac{1}{2}[/tex]

Answer :

Let's solve the equation step-by-step.

We start with the equation provided in Karissa's work:

1. [tex]\(\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)\)[/tex]

First, let's apply the distributive property on both sides to simplify:

2. [tex]\(\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4\)[/tex]

Now, combine like terms:

3. [tex]\(\frac{1}{2}x + 4 = -\frac{1}{2}x + 4\)[/tex]

Next, subtract 4 from both sides of the equation:

4. [tex]\(\frac{1}{2}x = -\frac{1}{2}x\)[/tex]

To solve for [tex]\(x\)[/tex], add [tex]\(\frac{1}{2}x\)[/tex] to both sides to get all the terms involving [tex]\(x\)[/tex] on one side:

5. [tex]\(\frac{1}{2}x + \frac{1}{2}x = 0\)[/tex]

Simplify the left side:

6. [tex]\(x = 0\)[/tex]

Thus, the value of [tex]\(x\)[/tex] is 0.