High School

Karissa begins to solve the equation

[tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex].

Her work is correct and is shown below:

[tex]
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4 \\
\end{array}
[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. [tex]-1[/tex]

B. [tex]-\frac{1}{2}[/tex]

C. 0

D. [tex]\frac{1}{2}[/tex]

Answer :

Let's solve the equation step by step and find the value of [tex]\( x \)[/tex].

The equation Karissa starts with is:

[tex]\[
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)
\][/tex]

Step 1: Simplify both sides

First, let's distribute and combine like terms on both sides of the equation:

- Left side: [tex]\(\frac{1}{2}(x-14) + 11\)[/tex]

- Distribute [tex]\(\frac{1}{2}\)[/tex]: [tex]\(\frac{1}{2}x - \frac{1}{2} \times 14 = \frac{1}{2}x - 7\)[/tex]
- Combine: [tex]\(\frac{1}{2}x - 7 + 11 = \frac{1}{2}x + 4\)[/tex]

- Right side: [tex]\(\frac{1}{2}x - (x - 4)\)[/tex]

- Distribute the negative sign: [tex]\(\frac{1}{2}x - x + 4\)[/tex]
- Simplify: [tex]\(\left(\frac{1}{2} - 1\right)x + 4 = -\frac{1}{2}x + 4\)[/tex]

Now the equation looks like:

[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Step 2: Set the equation

Subtract 4 from both sides:

[tex]\[
\frac{1}{2}x + 4 - 4 = -\frac{1}{2}x + 4 - 4
\][/tex]

This simplifies to:

[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

Step 3: Solve for [tex]\( x \)[/tex]

Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the term on the right:

[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

Combine like terms:

[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\(\boxed{0}\)[/tex].