Karissa begins to solve the equation [tex]\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)[/tex]. Her work is correct and is shown below:

[tex]
\begin{array}{c}
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4) \\
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4 \\
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\end{array}
[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2}x = -\frac{1}{2}x[/tex] results. What is the value of [tex]x[/tex]?

A. -1
B. [tex]\frac{1}{2}[/tex]
C. 0
D. [tex]\frac{1}{2}[/tex]

Answer :

Certainly! Let's go through the steps to solve the equation carefully:

We start with the equation Karissa worked on:

[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x - 4)
\][/tex]

1. Distribute and simplify each side:

The left side:
[tex]\[
\frac{1}{2}(x-14) = \frac{1}{2}x - 7
\][/tex]
After simplifying, it becomes:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x + 4
\][/tex]

The right side:
[tex]\[
\frac{1}{2}x - (x - 4) = \frac{1}{2}x - x + 4
\][/tex]
Simplifying it, you get:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]

2. Write the simplified equation:

Now the equation is:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

3. Subtract 4 from both sides:

When you subtract 4 from each side, the equation becomes:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

4. Combine like terms:

Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the [tex]\(-\frac{1}{2}x\)[/tex] on the right:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
Simplifying the left side gives:
[tex]\[
x = 0
\][/tex]

So, the value of [tex]\(x\)[/tex] is 0. This means that when you solve the equation using these steps, you find that [tex]\(x = 0\)[/tex] satisfies the equation.