College

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below.

[tex]

\begin{array}{c}

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\

\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\

\frac{1}{2} x+4=-\frac{1}{2} x+4

\end{array}

[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. -1
B. [tex]\frac{1}{2}[/tex]
C. 0
D. [tex]\frac{1}{2}[/tex]

Answer :

To solve the equation [tex]\(\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)\)[/tex], let's go through the solution step by step:

1. Distribute and simplify both sides:

Start with the original equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

Distribute [tex]\(\frac{1}{2}\)[/tex] to [tex]\((x-14)\)[/tex]:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

2. Combine like terms:

On the left side, combine [tex]\(-7\)[/tex] and [tex]\(11\)[/tex]:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]

3. Eliminate terms to solve for [tex]\(x\)[/tex]:

Subtract 4 from both sides to simplify:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

To eliminate the variable on the right side, add [tex]\(\frac{1}{2}x\)[/tex] to both sides:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

Combine the terms on the left side:
[tex]\[
x = 0
\][/tex]

So, the solution to the equation is [tex]\(x = 0\)[/tex].