College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Karissa begins to solve the equation

[tex]\[

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)

\][/tex]

Her work is correct and is shown below:

[tex]\[

\begin{array}{c}

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\

\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\

\frac{1}{2} x+4=-\frac{1}{2} x+4

\end{array}

\][/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x=-\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]
B. [tex]\(-\frac{1}{2}\)[/tex]
C. 0
D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Sure! Let's solve the equation step by step to find the value of [tex]\( x \)[/tex]:

1. Start with the original equation:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

2. Distribute and simplify:
- On the left side: [tex]\(\frac{1}{2}(x-14) = \frac{1}{2}x - 7\)[/tex]
- On the right side: [tex]\(- (x - 4) = -x + 4\)[/tex]

So the equation now looks like:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

3. Combine like terms:
- On the left side: [tex]\(-7 + 11 = 4\)[/tex], so the equation becomes [tex]\(\frac{1}{2}x + 4\)[/tex]
- On the right side: [tex]\(\frac{1}{2}x - x + 4\)[/tex] is simplified to [tex]\(-\frac{1}{2}x + 4\)[/tex]

The equation now is:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

4. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

5. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine the [tex]\( x \)[/tex] terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

This simplifies to:
[tex]\[
x = 0
\][/tex]

So, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].