High School

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2}x-(x-4)[/tex]. Her work is correct and is shown below.

[tex]
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2}x-(x-4) \\
\frac{1}{2}x-7+11=\frac{1}{2}x-x+4 \\
\frac{1}{2}x+4=-\frac{1}{2}x+4
\end{array}
[/tex]

When she subtracts 4 from both sides, the equation results in:

What is the value of [tex]x[/tex]?

A. -1
B. [tex]-\frac{1}{2}[/tex]
C. 0
D. [tex]\frac{1}{2}[/tex]

Answer :

Sure, let's solve the equation step-by-step to find the value of [tex]\( x \)[/tex].

We start with the given equation:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

First, distribute [tex]\(\frac{1}{2}\)[/tex] on the left side and simplify the right side:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

Combine like terms on both sides:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Next, subtract 4 from both sides to isolate the terms with [tex]\( x \)[/tex]:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

Now, add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

This simplifies to:
[tex]\[
x = 0
\][/tex]

Thus, the value of [tex]\( x \)[/tex] is:
[tex]\[
\boxed{0}
\][/tex]