Answer :
Sure, let's solve the equation step-by-step to find the value of [tex]\( x \)[/tex].
We start with the given equation:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
First, distribute [tex]\(\frac{1}{2}\)[/tex] on the left side and simplify the right side:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Combine like terms on both sides:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
Next, subtract 4 from both sides to isolate the terms with [tex]\( x \)[/tex]:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Now, add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
This simplifies to:
[tex]\[
x = 0
\][/tex]
Thus, the value of [tex]\( x \)[/tex] is:
[tex]\[
\boxed{0}
\][/tex]
We start with the given equation:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
First, distribute [tex]\(\frac{1}{2}\)[/tex] on the left side and simplify the right side:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]
Combine like terms on both sides:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
Next, subtract 4 from both sides to isolate the terms with [tex]\( x \)[/tex]:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
Now, add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
This simplifies to:
[tex]\[
x = 0
\][/tex]
Thus, the value of [tex]\( x \)[/tex] is:
[tex]\[
\boxed{0}
\][/tex]