College

Karissa begins to solve the equation

[tex]\[ \frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4). \][/tex]

Her work is correct and is shown below.

[tex]\[ \begin{array}{c}

\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4) \\

\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4 \\

\frac{1}{2}x + 4 = -\frac{1}{2}x + 4

\end{array} \][/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2}x = -\frac{1}{2}x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]

B. [tex]\(\frac{1}{2}\)[/tex]

C. 0

D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

Sure! Let's solve the equation step-by-step.

The equation given is:

[tex]\[ \frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4) \][/tex]

Step 1: Distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side of the equation.

[tex]\[ \frac{1}{2}x - 7 + 11 = \frac{1}{2}x - (x-4) \][/tex]

Step 2: Simplify the left side by combining like terms.

[tex]\[ \frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4 \][/tex]

[tex]\[ \frac{1}{2}x + 4 = \frac{1}{2}x - x + 4 \][/tex]

Step 3: Simplify the right side by distributing the negative sign and combining like terms.

[tex]\[ \frac{1}{2}x + 4 = -\frac{1}{2}x + 4 \][/tex]

Step 4: Subtract 4 from both sides to isolate the terms with [tex]\(x\)[/tex].

[tex]\[ \frac{1}{2}x + 4 - 4 = -\frac{1}{2}x + 4 - 4 \][/tex]

[tex]\[ \frac{1}{2}x = -\frac{1}{2}x \][/tex]

Step 5: Combine like terms by adding [tex]\(\frac{1}{2}x\)[/tex] to both sides of the equation.

[tex]\[ \frac{1}{2}x + \frac{1}{2}x = -\frac{1}{2}x + \frac{1}{2}x \][/tex]

[tex]\[ x = 0 \][/tex]

So, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].