Answer :
Final answer:
The lengths of the sides of the triangle with consecutive even integer lengths and a perimeter of 186 cm are 60 cm, 62 cm, and 64 cm. We found these values by setting up an equation based on the perimeter and solving for the shortest side.
Explanation:
To find the lengths of the sides of a triangle with consecutive even integer lengths and a perimeter of 186 cm, we can set up an equation. Let the shortest side be x, so the other two sides are x+2 and x+4 (since they are consecutive even integers). The equation representing the perimeter is then x + (x+2) + (x+4) = 186.
Combining like terms, we have 3x + 6 = 186. Subtracting 6 from both sides gives 3x = 180. Dividing both sides by 3, we find that x = 60. This means the lengths of the sides are 60 cm, 62 cm, and 64 cm.
Always remember to check that these lengths satisfy the triangle inequality theorem, which states that the sum of the lengths of any two sides must be greater than the length of the third side. In our case, 60 + 62 > 64, 60 + 64 > 62, and 62 + 64 > 60, confirming that these lengths do indeed form a triangle.
Answer: 60,62,64
Step-by-step explanation:
69+62+64=186
I divided 186 by 3 (since triangles have 3 sides) and played with the numbers from there.