Answer :
Yes, the conditions for inference are met for conducting a z-test for one proportion. The random, 10%, and large counts conditions are all met.
We can proceed with the test to determine if there is convincing evidence that the true proportion of flips for which the penny stack will land on its edge differs from 0.5. The random, 10%, and large counts conditions are all met for conducting a z-test for one proportion in this case. The student flipped the glued pennies stack 100 times, providing a sufficient sample size, and each flip is independent, meeting the random condition. Since the number of flips is less than 10% of all possible flips, the 10% condition is met. Finally, with 46 edge landings and 54 non-edge landings, both values exceed 10, meeting the large counts condition.
Learn more about z-test here
https://brainly.com/question/14453510
#SPJ11