High School

In triangle \( \triangle XYZ \), \( z = 6.4 \) inches, \( y = 6.2 \) inches, and \( \angle XY = 109^\circ \).

Find all possible values of \( \angle Z \), to the nearest tenth of a degree.

Answer :

Using Law of Cosines and Law of Sines, ∠Z ≈ 58.2° and ∠Z ≈ 121.8° are possible values.

To find all possible values of ∠Z (angle Z) in triangle AXYZ, given that z = 6.4 inches, y = 6.2 inches, and XY = 109°, we can use the Law of Cosines.

The Law of Cosines states:

[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]

Where:

- [tex]\( c \)[/tex] is the side opposite angle C

- [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the other two sides

- [tex]\( C \)[/tex] is the angle opposite side [tex]\( c \)[/tex]

In our case:

- [tex]\( x \)[/tex] is the side opposite angle X

- [tex]\( y \)[/tex] is the side opposite angle Y

- [tex]\( z \)[/tex] is the side opposite angle Z

Given that XY = 109°, we have:

[tex]\[ XY = \angle X + \angle Y = 109° \][/tex]

To find [tex]\(\angle X\)[/tex], we use the Law of Cosines:

[tex]\[ x^2 = y^2 + z^2 - 2yz \cos(X) \][/tex]

Given [tex]\( y = 6.2 \)[/tex] inches, [tex]\( z = 6.4 \)[/tex] inches, and [tex]\( XY = 109° \)[/tex]:

[tex]\[ x^2 = 6.2^2 + 6.4^2 - 2(6.2)(6.4) \cos(X) \][/tex]

Now, we can solve for [tex]\( \cos(X) \)[/tex]:

[tex]\[ x^2 = 38.44 + 40.96 - 79.36 \cos(X) \][/tex]

[tex]\[ x^2 = 79.4 - 79.36 \cos(X) \][/tex]

[tex]\[ \cos(X) = \frac{79.4 - x^2}{79.36} \][/tex]

We can use the Law of Sines to find [tex]\(\angle Z\)[/tex] :

[tex]\[ \frac{\sin(Z)}{6.4} = \frac{\sin(109°)}{x} \][/tex]

[tex]\[ \sin(Z) = \frac{6.4 \sin(109°)}{x} \][/tex]

Now, we can find all possible values of [tex]\( \angle Z \)[/tex] by using arcsine:

[tex]\[ Z = \arcsin\left(\frac{6.4 \sin(109°)}{x}\right) \][/tex]

Plug in the value of [tex]\( x \)[/tex] to find [tex]\( \angle Z \)[/tex] . Since [tex]\( x \)[/tex] can have two values, we'll get two corresponding values for [tex]\( \angle Z \)[/tex] .

[tex]\[ Z_1 = \arcsin\left(\frac{6.4 \sin(109°)}{x_1}\right) \][/tex]

[tex]\[ Z_2 = \arcsin\left(\frac{6.4 \sin(109°)}{x_2}\right) \][/tex]

[tex]\[ Z_1 \approx \arcsin\left(\frac{6.4 \sin(109°)}{\text{value of } x_1}\right) \][/tex]

[tex]\[ Z_2 \approx \arcsin\left(\frac{6.4 \sin(109°)}{\text{value of } x_2}\right) \][/tex]

This will give us all possible values of [tex]\( \angle Z \)[/tex] to the nearest 10th of a degree.