Answer :
We are given the expression
[tex]$$-3b^2 + 25$$[/tex]
and the value
[tex]$$b = 7.$$[/tex]
Step 1: Calculate [tex]\(b^2\)[/tex].
Substitute [tex]\(b = 7\)[/tex] into the squaring:
[tex]$$b^2 = 7^2 = 49.$$[/tex]
Step 2: Multiply [tex]\(b^2\)[/tex] by [tex]\(-3\)[/tex].
Multiply the squared value by [tex]\(-3\)[/tex]:
[tex]$$-3 \times 49 = -147.$$[/tex]
Step 3: Add 25 to the product.
Now add 25 to the result of the multiplication:
[tex]$$-147 + 25 = -122.$$[/tex]
Thus, the value of the expression is
[tex]$$\boxed{-122}.$$[/tex]
[tex]$$-3b^2 + 25$$[/tex]
and the value
[tex]$$b = 7.$$[/tex]
Step 1: Calculate [tex]\(b^2\)[/tex].
Substitute [tex]\(b = 7\)[/tex] into the squaring:
[tex]$$b^2 = 7^2 = 49.$$[/tex]
Step 2: Multiply [tex]\(b^2\)[/tex] by [tex]\(-3\)[/tex].
Multiply the squared value by [tex]\(-3\)[/tex]:
[tex]$$-3 \times 49 = -147.$$[/tex]
Step 3: Add 25 to the product.
Now add 25 to the result of the multiplication:
[tex]$$-147 + 25 = -122.$$[/tex]
Thus, the value of the expression is
[tex]$$\boxed{-122}.$$[/tex]